Meanings as proposals: an algebraic semantics

Matthijs Westera

Institute for Logic, Language and Computation University of Amsterdam

LOFT 2012, June 20 ${ }^{\text {th }}$

Goal

A semantics that distinguishes:
(1) $p \vee q$
(2) $p \vee q \vee(p \wedge q)$

Approach

(Following Roelofsen 2011)

1. Choose a particular perspective on meaning.
2. Derive a formal semantics from this perspective.

Example: deriving classical semantics

Example: deriving classical semantics

Meaning as information
A meaning A is a set of worlds, $A \subseteq \mathbf{W}$, that represents the information that the actual world lies in A.

Example: deriving classical semantics

Meaning as information
A meaning A is a set of worlds, $A \subseteq \mathbf{W}$, that represents the information that the actual world lies in A.

Example: deriving classical semantics

Meaning as information
A meaning A is a set of worlds, $A \subseteq \mathbf{W}$, that represents the information that the actual world lies in A.

Example: deriving classical semantics

Meaning as information
A meaning A is a set of worlds, $A \subseteq \mathbf{W}$, that represents the information that the actual world lies in A.

Example: deriving classical semantics

Meaning as information
A meaning A is a set of worlds, $A \subseteq \mathbf{W}$, that represents the information that the actual world lies in A.

Deriving an algebra of proposals $(1 / 2)$

Deriving an algebra of proposals $(1 / 2)$

Meanings as proposals
A meaning A is a set of functions, $A \subseteq \wp \mathbf{W}^{\wp \mathbf{W}}$, that represents the proposal to update the common ground with some $f \in A$.

Deriving an algebra of proposals $(1 / 2)$

Meanings as proposals
A meaning A is a set of functions, $A \subseteq \wp \mathbf{W}^{\wp \mathbf{W}}$, that represents the proposal to update the common ground with some $f \in A$.

Disjunctive proposals

Disjunctive proposals

'Let's do one of the updates in A, or one of the updates in B^{\prime}

Disjunctive proposals

'Let's do one of the updates in A, or one of the updates in B^{\prime} \equiv 'Let's do one of the updates in $A \cup B$.'

Disjunctive proposals

'Let's do one of the updates in A, or one of the updates in B^{\prime} \equiv 'Let's do one of the updates in $A \cup B$.'

Definition
$A \oplus B:=A \cup B$

Conjunctive proposals

Conjunctive proposals

'Let's do one of the updates in A, and one of the updates in B '

Conjunctive proposals

'Let's do one of the updates in A, and one of the updates in B ' \equiv 'Let's do a (composition of) two updates, one in A and one in B.'

Conjunctive proposals

'Let's do one of the updates in A, and one of the updates in B ' \equiv 'Let's do a (composition of) two updates, one in A and one in B.'

Definition
$A \otimes B:=\{f \circ g: f \in A, g \in B\}$

Deriving an algebra of proposals $(2 / 2)$

Deriving an algebra of proposals $(2 / 2)$

Deriving an algebra of proposals $(2 / 2)$

Semantics

Syntax
$\varphi:=p|\perp|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \rightarrow \psi)$, with $\neg \varphi:=\varphi \rightarrow \perp$.

Semantics

Syntax
$\varphi:=p|\perp|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \rightarrow \psi)$, with $\neg \varphi:=\varphi \rightarrow \perp$.
Semantics

1. $[p]=$
2. $[\perp]=$
3. $[\varphi \vee \psi]=$
4. $[\varphi \wedge \psi]=$
5. $[\varphi \rightarrow \psi]=$

Semantics

Syntax
$\varphi:=p|\perp|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \rightarrow \psi)$, with $\neg \varphi:=\varphi \rightarrow \perp$.
Semantics

1. $[p]=$
2. $[\perp]=$
3. $[\varphi \vee \psi]=[\varphi] \oplus[\psi]$
4. $[\varphi \wedge \psi]=$
5. $[\varphi \rightarrow \psi]=$

Semantics

Syntax
$\varphi:=p|\perp|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \rightarrow \psi)$, with $\neg \varphi:=\varphi \rightarrow \perp$.
Semantics

1. $[p]=$
2. $[\perp]=$
3. $[\varphi \vee \psi]=[\varphi] \oplus[\psi]$
4. $[\varphi \wedge \psi]=[\varphi] \otimes[\psi]$
5. $[\varphi \rightarrow \psi]=$

Semantics

Syntax
$\varphi:=p|\perp|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \rightarrow \psi)$, with $\neg \varphi:=\varphi \rightarrow \perp$.
Semantics

1. $[p]=\{\lambda x \cdot x \cap\{w \in \mathbf{W}: w(p)=1\}\}$
2. $[\perp]=$
3. $[\varphi \vee \psi]=[\varphi] \oplus[\psi]$
4. $[\varphi \wedge \psi]=[\varphi] \otimes[\psi]$
5. $[\varphi \rightarrow \psi]=$

Semantics

Syntax
$\varphi:=p|\perp|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \rightarrow \psi)$, with $\neg \varphi:=\varphi \rightarrow \perp$.
Semantics

1. $[p]=\{\lambda x \cdot x \cap\{w \in \mathbf{W}: w(p)=1\}\}$
2. $[\perp]=\{\lambda x, x \cap \varnothing\}$
3. $[\varphi \vee \psi]=[\varphi] \oplus[\psi]$
4. $[\varphi \wedge \psi]=[\varphi] \otimes[\psi]$
5. $[\varphi \rightarrow \psi]=$

Semantics

Syntax
$\varphi:=p|\perp|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \rightarrow \psi)$, with $\neg \varphi:=\varphi \rightarrow \perp$.
Semantics

1. $[p]=\{\lambda x \cdot x \cap\{w \in \mathbf{W}: w(p)=1\}\}$
2. $[\perp]=\{\lambda x, x \cap \varnothing\}$
3. $[\varphi \vee \psi]=[\varphi] \oplus[\psi]$
4. $[\varphi \wedge \psi]=[\rho] \otimes \psi]$
5. $[\varphi \rightarrow \psi]=$ CENSORED

Related formalisms

Related formalisms

$$
\begin{aligned}
& \text { Definition (static representation) } \\
& \widehat{A}:=\{f(\mathbf{W}): f \in A\} \text {. }
\end{aligned}
$$

Related formalisms

Definition (static representation)
 $\widehat{A}:=\{f(\mathbf{W}): f \in A\}$.

For any φ :

- $\bigcup \widehat{[\varphi]}=[\varphi]_{\text {Classical }}$

Related formalisms

Definition (static representation)
$\widehat{A}:=\{f(\mathbf{W}): f \in A\}$.

For any φ :

- $\cup \widehat{[\varphi]}=[\varphi]_{\text {Classical }}$
- $\widehat{\varphi}] \downarrow=[\varphi]_{\text {Inquisitive }}$
(Groenendijk, Roelofsen, et al.)

Fin.

Thanks to the Netherlands Organization for Scientific Research (NWO) for financial support; to F. Roelofsen, J. Groenendijk, J. Marti, I. Ciardelli and an anonymous reviewer for valuable comments.

Fin.

Thanks to the Netherlands Organization for Scientific Research (NWO) for financial support; to F. Roelofsen, J. Groenendijk, J. Marti, I. Ciardelli and an anonymous reviewer for valuable comments.

