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Goal

A semantics that distinguishes:

(1) p ∨ q

(2) p ∨ q ∨ (p ∧ q)



Approach
(Following Roelofsen 2011)

1. Choose a particular perspective on meaning.

2. Derive a formal semantics from this perspective.



Example: deriving classical semantics

Meaning as information

A meaning A is a set of worlds, A ⊆ W, that represents the
information that the actual world lies in A.
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Semantics

Syntax

ϕ ∶= p∣�∣(ϕ ∨ ϕ)∣(ϕ ∧ ϕ)∣(ϕ→ ψ), with ¬ϕ ∶= ϕ→ �.

Semantics

1. [p] =

{λx .x ∩ {w ∈ W ∶ w(p) = 1}}

2. [�] =

{λx .x ∩ ∅}

3. [ϕ ∨ ψ] =

[ϕ]⊕[ψ]

4. [ϕ ∧ ψ] =

[ϕ]⊗[ψ]

5. [ϕ→ ψ] = CENSORED
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Related formalisms

Definition (static representation)

Â ∶= {f (W) ∶ f ∈ A}.

For any ϕ:

▸ ⋃ [̂ϕ] = [ϕ]Classical

▸ [̂ϕ]↓= [ϕ]Inquisitive (Groenendijk, Roelofsen, et al.)
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Â ∶= {f (W) ∶ f ∈ A}.

For any ϕ:

▸ ⋃ [̂ϕ] = [ϕ]Classical

▸ [̂ϕ]↓= [ϕ]Inquisitive (Groenendijk, Roelofsen, et al.)



Related formalisms

Definition (static representation)
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